Контрольные работы по геометрии. 9 класс.

Обучающиеся по адаптированной основной общеобразовательной программе ООО выполняют задания, нумерация которых содержит верхний регистр 0.

Контрольная работа №1 Решение треугольников

1 вариант

 1^0 .В треугольнике $ABC \angle A = 45^0$,

$$\angle B = 60^{\circ}, BC = 3\sqrt{2}$$
. Найдите AC.

20. Две стороны треугольника равны

7 см и 8 см, а угол между ними равен 120^{0} . Найдите третью сторону треугольника и его плошаль.

 3^{0} .Определите вид треугольника *ABC*, если *A* (3;9), *B* (0; 6), *C* (4; 2).

4. В $\triangle ABC$ AB = BC, $\angle CAB = 30^{\circ}$, AE - биссектриса, BE = 8 *см*. Найдите площадь треугольника ABC.

2 вариант

 1^0 .В треугольнике $CDE \angle C = 30^0$,

 $\angle D = 45^{\circ}$, $CE = 5\sqrt{2}$. Найдите DE.

20. Две стороны треугольника равны

 $5 \, cm$ и $7 \, cm$, а угол между ними равен 60^{0} . Найдите третью сторону треугольника и его

 3^{0} .Определите вид треугольника *ABC*, если *A* (3; 9), *B* (0; 6), *C* (4; 2).

4.В ромбе ABCD AK — биссектриса угла CAB, $\angle BAD = 60^{\circ}$, BK = 12 cm. Найдите площадь ромба.

Контрольная работа №2. Преобразование подобия

площадь.

 1^{0} .О – точка пересечения хорд AB и СД. AO=5, BO=6, CO=3. Найти ДО.

2⁰.Из точки К проведены к окружности касательная КВ длиной 6 см и секущая КМ длиной 9см. Найти длину внешней части секущей КР.

3.Хорды КМ и РТ пересекаются в точке C, KC = 7 см, CM = 4 см, PT = 16 см. Найдите отрезки: a) PC, б) CT.

- 1.O точка пересечения хорд AB и СД. AO=8, BO=6, CO=10. Найти ДО.
- 2⁰.Из точки К проведены к окружности касательная КВ длиной 8 см и секущая КМ длиной 16см. Найти длину внешней части секущей КР.
- 3.В окружности с центром О проведены хорды AB и CD, которые пересекаются в точке E. AE = 8 см, BE = 16 см. Длина ED в 2 раза больше длины CE. Найдите ED.

Контрольная работа № 3. Векторы

1 вариант.

 1^{0} . Начертите два неколлинеарных вектора \vec{a} и $\vec{6}$. Постройте векторы, равные:

a)
$$\frac{1}{2}\vec{a} + 3\vec{e}$$
; 6) $2\vec{e} - \vec{a}$

 2^{0} . На стороне BC ромба ABCD лежит точка K такая, что BK = KC, O — точка пересечения диагоналей. Выразите векторы \overrightarrow{AO} , \overrightarrow{AK} , \overrightarrow{KD} через векторы $\overrightarrow{a} = \overrightarrow{AB}$ и $\overrightarrow{e} = \overrightarrow{AD}$.

- 3⁰. В равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. Найдите среднюю линию трапеции.
- 4.* В треугольнике \overrightarrow{ABCO} точка пересечения медиан. Выразите вектор \overrightarrow{AO} через векторы $\overrightarrow{a} = \overrightarrow{AB}$ и $\overrightarrow{e} = \overrightarrow{AC}$.

2 вариант

 1^{0} . Начертите два неколлинеарных вектора \vec{m} и \vec{n} . Постройте векторы, равные:

a)
$$\frac{1}{3}\vec{m} + 2\vec{n}$$
; 6) $3\vec{n} - \vec{m}$

 2^{0} . На стороне CD квадрата ABCD лежит точка P такая, что CP = PD, O — точка пересечения диагоналей. Выразите векторы

 \overrightarrow{BO} , \overrightarrow{BP} , \overrightarrow{PA} через векторы $\vec{x} = \overrightarrow{BA}$ и $\vec{y} = \overrightarrow{BC}$

- 3^{0} . В равнобедренной трапеции один из углов равен 60^{0} , боковая сторона равна 8 *см*, а меньшее основание 7 *см*. Найдите среднюю линию трапеции.
- 4. * В треугольнике MNK O точка пересечения медиан,

$$\overrightarrow{MN} = \overrightarrow{x}, \overrightarrow{MK} = \overrightarrow{y}, \overrightarrow{MO} = k \cdot (\overrightarrow{x} + \overrightarrow{y}).$$
 Найдите

число k.

Контрольная работа № 4. Декартовы координаты на плоскости.

1 вариант.

- 1° . Найдите координаты и длину вектора \vec{a} , если $\vec{a} = \frac{1}{2}\vec{m} - \vec{n}$, $\vec{m} \{-3; 6\}$, $\vec{n} \{2; -2\}$.
- 20. Напишите уравнение окружности с центром в точке А (- 3;2), проходящей через точку B(0; -2).
- 3^{0} . Треугольник *MNK* задан координатами своих вершин: М (- 6; 1), N (2; 4), К (2; - 2). A^0) Докажите, что ΔMNK равнобедренный;
- б) Найдите высоту, проведённую из вершины M.
- 4. * Найдите координаты точки N, лежащей на оси абсцисс и равноудалённой от точек PP(-1; 3) и K(0; 2). иK, если

2 вариант.

- 1^0 . Найдите координаты и длину вектора \vec{e} , если $\vec{e} = \frac{1}{2}\vec{c} - \vec{d}$, $\vec{c} \{6; -2\}$, $\vec{d} \{1; -2\}$.
- 20. Напишите уравнение окружности с центром в точке C(2; 1), проходящей через точку D (5; 5).
- 3⁰. Треугольник *CDE* задан координатами своих вершин: *C* (2; 2), *D* (6; 5), *E* (5; - 2). A^0) Докажите, что ΔCDE - равнобедренный;
- б) Найдите биссектрису, проведённую из
- вершины C.
- 4. * Найдите координаты точки А, лежащей на оси ординат и равноудалённой от точек В и С, если В(1; -3) и С(2; 0).

Контрольная работа № 5.

Правильные многоугольники. Длина окружности и площадь круга.

1 вариант

- 10. Найдите площадь круга и длину ограничивающей его окружности, если сторона правильного треугольника, вписанного в него, равна $5\sqrt{3}$ *см*.
- 20. Вычислите длину дуги окружности с радиусом 4 см, если её градусная мера равна 120° . Чему равна площадь соответствующего данной дуге кругового сектора?
- 3. Периметр правильного треугольника, вписанного в окружность, равен $6\sqrt{3}$ *см*. Найдите периметр правильного шестиугольника, описанного около той же окружности.

2 вариант

- 10. Найдите площадь круга и длину ограничивающей его окружности, если сторона квадрата, описанного около него, равна *6 см*.
- 20. Вычислите длину дуги окружности с радиусом 10 см, если её градусная мера равна 150° . Чему равна площадь соответствующего данной дуге кругового сектора?
- 3. Периметр квадрата, описанного около окружности, равен 16 дм. Найдите периметр правильного пятиугольника, вписанного в эту же окружность.